A. Định nghĩa ba điểm thẳng hàng là gì?
Ba điểm thẳng hàng được xác định là 3 điểm nằm trên cùng một đường thẳng
B. Mối quan hệ giữa ba điểm thẳng hàng
Nếu có ba điểm thẳng hàng thì ba điểm này phân biệt và cùng nằm trên một đường thẳng.
Có duy nhất một và chỉ một đường thẳng đi qua 3 điểm cho trước xác định
C. Liệt kê một số cách chứng minh ba điểm thẳng hàng thường được sử dụng
Dưới đây là một số phương pháp thường được sử dụng để chứng minh 3 điểm thẳng hàng:
- Sử dụng tính chất của hai góc kề bù có hai cạnh là hai tia đối nhau
- Chứng minh 3 điểm bất kì cùng 1 tia hoặc một đường thẳng bất kì
- Hai đoạn thẳng đi qua hai trong ba điểm cần phải chứng minh thẳng hàng cùng song song với một đường thẳng thứ 3
- Hai đường thẳng cùng đi qua hai trong ba điểm cần chứng minh cùng vuông góc với một đường thẳng thứ 3 bất kì nào đó.
- Chứng minh đường thẳng đi qua 2 điểm cũng đi qua điểm còn lại
- Sử dụng tính chất đường phân giác của một góc, tính chất về đường trung trực của đoạn thẳng hoặc tính chất ba đường cao trong một tam giác.
- Sử dụng các tính chất của hình bình hành
- Sử dụng các tính chất của góc nội tiếp đường tròn
- Sử dụng các tính chất của góc đối đỉnh bằng nhau
- Chứng minh bằng cách sử dụng phương pháp phản chứng
- Chứng minh diện tích của tam giác được tạo bởi 3 điểm bằng 0
- Áp dụng tính chất về sự đồng quy của các đoạn thẳng
Khóa học DUO dành riêng cho các em bậc THCS từ nhà trường VUIHOC, các em sẽ được học cùng các thầy cô TOP trường điểm quốc gia với kinh nghiệm giảng dạy phong phú. Đăng ký học thử để được trải nghiệm buổi học trực tuyến hoàn toàn miễn phí nhé!
D. Hướng dẫn chi tiết các phương pháp chứng minh 3 điểm thẳng hàng
Phương pháp số 1: Chứng minh 3 điểm thằng hàng dựa trên tính chất của góc bẹt
Ta lựa chọn một điểm D bất kỳ xác định không trùng với 3 điểm A, B, C cho trước: Ta chứng minh nếu
Phương pháp số 2: Chứng minh 3 điểm thẳng hàng dựa trên tiên đề Ơ-Cơ-Lit
Cho 3 điểm A, B, C bất kỳ và 1 đường thẳng a. Nếu đường thẳng đi qua 2 điểm A, B là AB // a và đường thẳng đi qua 2 điểm A, C là AC // a thì ta khẳng định ba điểm A; B; C thẳng hàng. (dựa trên cơ sở về tiên đề Ơ-cơ-lít trong chương trình Toán lớp 7)
Phương pháp số 3: Sử dụng tính chất của 2 đường thẳng vuông góc
Nếu đường thẳng đi qua 2 điểm AB ⊥ a; đường thẳng đi qua 2 điểm AC ⊥ a thì ta có thể kết luận ba điểm A; B; C thẳng hàng.
(Cơ sở lý thuyết của phương pháp số 3: Có duy nhất 1 và chỉ 1 một đường thẳng a’ đi qua điểm O bất kỳ và vuông góc với đường thẳng a cho trước)
Hoặc các em học sinh có thể sử dụng tính chất của 3 điểm A; B; C cùng thuộc một đường trung trực của một đoạn thẳng. (nằm trong chương trình toán học lớp 7)
Phương pháp số 4: Áp dụng tính duy nhất tia phân giác
Nếu có 2 tia OA và tia OB được xác định là hai tia phân giác của góc xOy thì ta có thể khẳng định rằng 3 điểm O, A, B thẳng hàng
Cơ sở lý thuyết của phương pháp này: Một gác xác định chỉ có duy nhất một và chỉ một đường phân giác
* Hoặc : Hai tia OA và OB cùng nằm trên cùng một nửa mặt phẳng có bờ chứa tia Ox, ta có
Phương pháp số 5: Áp dụng tính chất của đường trung trực
Nếu có điểm K xác định là trung điểm của đoạn thẳng BD, ta có điểm K’ là giao điểm của 2 đoạn thẳng AC và đoạn thẳng BD. Nếu điểm K’ là trung điểm BD và K’ trùng K. Từ đó ta có thể kết luận 3 điểm A, K, C thẳng hàng.
(Cơ sở lý thuyết của phương pháp này: trên một đoạn thẳng xác định có 1 và chỉ 1 trung điểm của đoạn thẳng)
Phương pháp số 6: Áp dụng tính chất các đường đồng quy
Chứng minh 3 điểm thuộc các đường đồng quy của tam giác.
Ví dụ: Chứng minh điểm H là trọng tâm tam giác ABC và có đoạn thẳng AM là trung tuyến của góc A. Từ đó suy ra 3 điểm A, M, H thẳng hàng.
Bên cạnh đó, các em học sinh chứng minh 3 điểm thẳng hàng bằng cách vận dụng tương tự cho tất cả các đường đồng quy khác của tam giác như 3 trung trực, 3 đường cao hoặc 3 đường phân giác trong tam giác.
Phương pháp số 7: Sử dụng phương pháp vectơ
Ta áp dụng tính chất của 2 vectơ có cùng phương để chứng minh tồn tại đường thẳng đi qua cả 3 điểm cho trước (tức là 3 điểm thẳng hàng)
Ví dụ minh họa: Chứng minh 2
E. Các bài tập vận dụng và luyện tập chứng minh 3 điểm thẳng hàng
Bài tập 1: Cho tam giác ABC có góc A bằng 90 độ. Một đường tròn có đường kính AB cắt đoạn thẳng BC tại D khác B. Gọi điểm M là điểm bất kì trên đoạn AD. Kẻ MH, MI lần lượt vuông góc với đoạn thẳng AB, AC tại H, I. Kẻ HK vuông góc với ID tại điểm K. Chứng minh
Bài tập 2: Cho tam giác ABC vuông tại đỉnh A. Lấy điểm B làm tâm, ta vẽ một đường tròn có bán kính bằng BA. Từ điểm C, ta vẽ đường tròn có bán kính bằng AC. Hai đường tròn này giao nhau tại điểm thứ hai là điểm D. Lần lượt vẽ 2 dây cung AM và AN của đường tròn (B) và (C) sao cho thỏa mãn điều kiện AN vuông góc với AM và điểm D nằm giữa 2 điểm M và N. Chứng minh rằng ba điểm M, D, N thẳng hàng.
Bài tập 3: Cho nửa đường tròn (O; R) có đường kính độ dài AB. Gọi điểm C là một điểm điểm bất kì thuộc nửa đường tròn sao cho 0 < AC < BC. Gọi D là điểm nằm trên cung nhỏ BC thỏa mãn điều kiện
Bài tập 4: Gọi điểm O là trung điểm của đoạn thẳng AB. Tại trên hai nửa mặt phẳng đối nhau với bờ AB, ta kẻ 2 tia Ax và By sao cho
Bài tập 5: Cho tam giác ABC. Từ điểm A vẽ đường thẳng xy song song với đoạn thẳng BC. Từ điểm M thuộc cạnh BC, ta vẽ các đường thẳng song song AB và AC, các đường thẳng này cắt đường thẳng xy lần lượt tại các điểm D và E. Chứng minh rằng các đường thẳng AM, BD, CE đều đi qua 1 điểm xác định.
Bài tập 6: Cho tam giác ABC. Trên tia đối của tia AB ta lấy điểm D sao cho thỏa mãn điều kiện AD = AB, trên tia đối tia AC ta lấy điểm E sao cho AE = AC. Gọi M; N lần lượt là 2 điểm thuộc đoạn thẳng BC và ED sao cho CM = EN. Chứng minh rằng ba điểm M; A; N thẳng hàng.
Trên đây là toàn bộ kiến thức về lý thuyết, phương pháp và một số bài tập vận dụng về cáchchứng minh 3 điểm thẳng hàng. Hy vọng rằng với bài viết này sẽ giúp các em học sinh có thêm nhiều phương án giải khi gặp về dạng bài tập này.