Hằng đẳng thức đáng nhớ|Toán 8 Chương trình mới

1. Các hằng đẳng thức đáng nhớ trong chương trình toán 8

1.1 Bình phương của một tổng, một hiệu

- Với hai biểu thức tùy ý A và B, ta có:

(A + B)2 = A2 + 2AB + B2

(A - B)2 = A2 - 2AB + B2

Ví dụ: ( x + 2)2 = x2 + 2.x.2 + 22 = x2 + 4x + 4

1.2 Hiệu của hai bình phương

- Với hai biểu thức tùy ý A và B, ta có:

A2 - B2 = (A + B)(A - B)

Ví dụ: x2 - 4 = (x + 2)(x - 2)

1.3 Lập phương của một tổng, một hiệu

- Với hai biểu thức tùy ý A và B, ta có:

(A + B)3 = A3 + 3A2B + 3AB2 + B3

(A - B)3 = A3 - 3A2B + 3AB2 - B3

Ví dụ: (x - 2y)3 = x3 - 3.x2.2y + 3.x.(2y)2 - (2y)3

= x3 - 6x2y + 12xy2 - 8y3

1.4 Tổng và hiệu của hai lập phương

- Với hai biểu thức tùy ý A và B, ta có:

A3 + B3 = (A + B)(A2 - AB + B2)

A3 - B3 = (A - B)(A2 + AB + B2)

Ví dụ: x3 + 8 = x3 + 23 = (x + 2)(x2 - 2x + 4)

>> Xem thêm: Tổng hợp kiến thức toán 8 chi tiết SGK mới

2. Bài tập về các hằng đẳng thức đáng nhớ

2.1 Bài tập về các hằng đẳng thức đáng nhớ sách cánh diều

Bài 1 trang 23 SGK Toán 8/1 Cánh diều

a) 4x2 + 28x + 49 = (2x)2 + 2 . 2x . 7 + 72 = (2x + 7)2;

b) 4a2 + 20ab + 25b2 = (2a)2 + 2 . 2a . 5b + (5b)2 = (2a + 5b)2;

c) 16y2 - 8y + 1 = (4y)2 - 2 . 4y . 1 + 12 = (4y - 1)2;

d) 9x2 - 6xy + y2 = (3x)2 - 2 . 3x . y + y2 = (3x - y)2.

Bài 2 trang 23 SGK Toán 8/1 Cánh diều

a) a3 +12a2 + 48a + 64 = a3 + 3 . a2 . 4 + 3 . a . 42 + 43 = (a + 4)3;

b) 27x3 + 54x2y + 36xy2 + 8y3

= (3x)3 + 3 . (3x)2 . 2y + 3 . 3x . (2y)2 + (2y)3

= (3x + 2y)3;

c) x3 - 9x2 + 27x - 27 = x3 - 3 . x2 . 3 + 3 . x . 32 - 33 = (x - 3)3;

d) 8a3 - 12a2b + 6ab2 - b3 = (2a)3 - 3 . (2a)2b + 3 . 2ab2 - b3 = (2a - b)3.

Bài 3 trang 23 SGK Toán 8/1 Cánh diều

a) 25x2 - 16 = (5x)2 - 42 = (5x + 4)(5x - 4);

b) 16a2 - 9b2 = (4a)2 - (3b)2 = (4a + 3b)(4a - 3b);

c) 8x3 + 1 = (2x)3 + 1 = (2x + 1)[(2x)2 - 2x . 1 + 12] = (2x + 1)(4x2 - 2x + 1);

d) 125x3 + 27y3 = (5x)3 + (3y)3 = (5x + 3y)[(5x)2 - 5x . 3y + (3y)2]

= (5x + 3y)(25x2 - 15xy + 9y2);

e) 8x3 - 125 = (2x)3 - 53 = (2x - 5)[(2x)2 + 2x . 5 + 52]

= (2x - 5)(4x2 + 10x + 25);

g) 27x3 - y3 = (3x)3 - y3 = (3x - y)[(3x)2 + 3x.y + y2].

Bài 4 trang 23 SGK Toán 8/1 Cánh diều

a) Ta có A = x2 + 6x + 10 = x2 + 6x + 9 + 1 = (x + 3)2 + 1.

Thay x = −103 vào biểu thức A, ta được:

A = (−103 + 3)2 + 1 = (−100)2 + 1 = 10 000 + 1 = 10 001.

Vậy A = 10 001 tại x = −103.

b) Ta có B = x3 + 6x2 + 12x + 12 = x3 + 3 . x2 . 2 + 3 . x . 22 + 23 + 4

= (x + 2)3 + 4.

Thay x = 8 vào biểu thức B, ta được:

B = (8 + 2)3 + 4 = 103 + 4 = 1004.

Vậy B = 1004 tại x = 8.

Bài 5 trang 23 SGK Toán 8/1 Cánh diều

a) Ta có C = (3x - 1)2 + (3x + 1)2 - 2(3x - 1)(3x + 1)

= [(3x - 1) - (3x + 1)]2= (3x - 1 - 3x - 1)2

= (- 1 - 1)2= (-2)2= 4.

Vậy biểu thức C không phụ thuộc vào biến x.

b) D = (x + 2)3 - (x - 2)3 - 12(x2 + 1)

= [(x + 2) - (x - 2)][(x + 2)2 + (x + 2)(x - 2) + (x - 2)2] - 12(x2 + 1)

= (x + 2 - x + 2)[(x + 2)2 + x2 - 22 + (x - 2)2] - 12x2 - 12

= 4(x2 + 4x + 4 + x2 - 4 +x2- 4x + 4) - 12x2 - 12

= 4(3x2 + 4) - 12x2 - 12

= 12x2 + 16 - 12x2 - 12 = 4.

Vậy biểu thức D không phụ thuộc vào biến x.

c) E = (x + 3)(x2 - 3x + 9) - (x - 2)(x2 + 2x + 4)

= (x3 + 33) - (x3 - 23) = x3 + 27 - x3+ 8 = 35.

Vậy biểu thức E không phụ thuộc vào biến x.

d) G = (2x - 1)(4x2 + 2x + 1) - 8(x + 2)(x2 - 2x + 4)

= [(2x)3 - 13]- 8(x3 + 23) = (8x3 - 1) - 8(x3 + 8)

= 8x3 - 1-8x3 - 64 = - 65.

Vậy biểu thức D không phụ thuộc vào biến x.

Bài 6 trang 23 SGK Toán 8/1 Cánh diều

Ta có (0,76)3 + (0,24)3 + 3 . 0,76 . 024

= (0,76 + 0,24)3 - 3 . 0,76 . 024 . (0,76 + 024) + 3 . 0,76 . 024

= 13 - 3 . 0,76 . 024 . 1 + 3 . 0,76 . 024

= 1 - 3 . 0,76 . 024 + 3 . 0,76 . 024 = 1.

Vậy (0,76)3 + (0,24)3 + 3 . 0,76 . 024 = 1.

Lộ trình khóa học DUO dành riêng cho cấp THCS sẽ được thiết kế riêng cho từng em học sinh, phù hợp với khả năng của các em cũng như giúp các em từng bước tăng 3 - 6 điểm trong bài thi của mình.

Hằng đẳng thức đáng nhớ|Toán 8 Chương trình mới

2.2 Bài tập về các hằng đẳng thức đáng nhớ sách chân trời sáng tạo

Bài 1 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) (3x + 4)2

= (3x)2 + 2.3x.4 + 42

= 9x2 + 24x + 16.

b) (5x - y)2

= (5x)2 - 2.5x.y + y2

= 25x2 - 10xy + y2.

c. \large \left ( xy-\frac{1}{2}y \right )^{2}=(xy)^{2}-2xy.\frac{1}{2}y+\left ( \frac{1}{2} \right )y^{2}

\large =x^{2}y^{2}-xy^{2}+\frac{1}{4}y^{2}

Bài 2 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) x2 + 2x + 1 = x2 + 2.x.1 + 12 = (x + 1)2.

b) 9 - 24x + 16x2 = 32 - 2.3.4x + (4x)2 = (3 - 4x)2

c. \large 4x^{2}+\frac{1}{4}+2x=4x^{2}+2x+\frac{1}{4}

\large =(2x)^{2}+2.2x.\frac{1}{2}+\left ( \frac{1}{2} \right )^{2}=\left ( 2x+\frac{1}{2} \right )^{2}

Bài 3 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) (3x - 5)(3x + 5) = (3x)2 - 52 = 9x2 - 25.

b) (x - 2y)(x + 2y) = x2 - (2y)2 = x2 - 4y2.

c. \large \left ( -x-\frac{1}{2}y \right )\left ( -x+\frac{1}{2}y \right )=(-x)^{2}-\left ( \frac{1}{2}y \right )^{2}=x^{2}-\frac{1}{4}y^{2}

Bài 4 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) Biểu thức tính diện tích của hình vuông có cạnh bằng 2x + 3 là:

(2x + 3)2 = (2x)2 + 2.2x.3 + 32 = 4x2 + 12x + 9.

b) Biểu thức tính thể tích của khối lập phương có cạnh bằng 3x − 2 là:

(3x - 2)3 = (3x)3 - 3.(3x)2.2 + 3.3x.22 - 23

= 27x3 - 54x2 + 36x - 8.

Bài 5 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) 38 . 42 = (40 - 2).(40 + 2) = 402 - 22 = 1 600 - 4 = 1 596.

b) 1022 = (100 + 2)2 = 1002 + 2.100.2 + 22 = 10 000 + 400 + 4 = 10 404.

c) 1982 = (200 - 2)2 = 2002 - 2.200.2 + 22 = 40 000 - 800 + 4 = 39 204.

d) 752 - 252 = (75 + 25).(75 - 25) = 100 . 50 = 5 000.

Bài 6 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) (2x - 3)3 = (2x)3 - 3.(2x)2.3 + 3.2x.32 - 33 = 8x3 - 36x2 + 54x - 8.

b) (a + 3b)3 = a3 + 3.a2.3b + 3.a.(3b)2 + (3b)3 = a3 + 9a2b + 27ab2 + 27b3.

c) (xy -1)3 = (xy)3 - 3.(xy)2.1 + 3.xy.12 - 13 = x3y3 - 3x2y2 + 3xy - 1.

Bài 7 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) (a - 5)(a2 + 5a + 25) = (a - 5)(a2 + a.5 + 52) = a3 - 53 = a3 - 125.

b) (x + 2y)(x2 - 2xy + 4y2) = (x + 2y).[x2 - x.2y + (2y)2] = x3 + (2y)3 = x3 + 8y3.

Bài 8 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) (a - 1)(a + 1)(a2 + 1) = (a2 - 1)(a2 + 1) = (a2)2 - 12 = a4 - 1.

b) (xy + 1)2 - (xy - 1)2 = [(xy + 1) + (xy - 1)].[(xy + 1) - (xy - 1)]

= [xy + 1 + xy - 1].[xy + 1 - xy + 1] = 2xy.2 = 4xy.

Bài 9 trang 22 SGK toán 8/1 Chân trời sáng tạo

a) Ta có: (x − y)2 = x2 - 2xy + y2 = x2 + 2xy + y2 - 4xy = (x + y)2 - 4xy

Thay x + y = 12 và xy = 35 vào biểu thức trên ta có:

(x − y)2 = 122 - 4.35 = 144 - 140 = 4.

b) Ta có: (x + y)2 = x2 + 2xy + y2 = x2 - 2xy + y2 + 4xy = (x - y)2 + 4xy

Thay x - y = 8 và xy = 20 vào biểu thức trên ta có:

(x + y)2 = 82 + 4.20 = 64 + 80 = 144.

c) Ta có: x3 + y3 = (x + y).(x2 - xy + y2) = (x + y).(x2 + 2xy + y2 - 3xy)

= (x + y).[(x + y)2 - 3xy]

Thay x + y = 5 và xy = 6 vào biểu thức trên ta có:

x3 + y3 = 5.(52 - 3.6) = 5.(25 - 18) = 5.7 = 35.

d) Ta có: x3 - y3 = (x - y).(x2 + xy + y2) = (x - y).(x2 - 2xy + y2 + 3xy)

= (x - y).[(x - y)2 + 3xy]

Thay x - y = 3 và xy = 40 vào biểu thức trên ta có:

x3 - y3 = 3.(32 - 3.40) = 3.(9 - 120) = 5.(-111) = -555.

Bài 10 trang 22 SGK toán 8/1 Chân trời sáng tạo

Hình hộp chữ nhật có nhiều dài, rộng, cao đều bằng 5 có thể tích là:

53 = 125 (cm3).

a) Chiều dài của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).

Chiều rộng của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).

Thể tích hình hộp chữ nhật lúc sau là:

(5 + a).(5 + a).5 = (5 + a)2.5 = (52 + 2.5.a + a2).5 = (25 + 10a + a2).5

= 25.5 + 10a.5 + a2.5 = 125 + 50a + 5a2 (cm3).

Khi đó thể tích của hình hộp chữ nhật đã tăng thêm là:

125 + 50a + 5a2 - 125 = 5a2 + 50a (cm3).

Vậy nếu chiều dài và chiều rộng tăng thêm a cm thì thể tích của hình hộp chữ nhật đã tăng thêm 5a2 + 50a (cm3).

b) Chiều cao của hình hộp chữ nhật sau khi tăng thêm a cm là: 5 + a (cm).

Thể tích hình hộp chữ nhật lúc sau là:

(5 + a).(5 + a).(5 + a) = (5 + a)3 = 53 + 3.52.a + 3.5.a2 + a3 = 125 + 75a + 15a2 + a3 (cm3).

Khi đó thể tích của hình hộp chữ nhật đã tăng thêm là:

125 + 75a + 15a2 + a3 - 125 = a3 + 15a2 + 75a (cm3).

Vậy nếu chiều dài, chiều rộng, chiều cao đều tăng thêm a cm thì thể tích của hình hộp chữ nhật đã tăng thêm a3 + 15a2 + 75a (cm3).

2.3 Bài tập về các hằng đẳng thức đáng nhớ sách kết nối tri thức

Bài 2.1 trang 33 SGK Toán 8/1 kết nối tri thức

a) Đẳng thức x + 2 = 3x + 1 không phải là hằng đẳng thức vì khi x = 0 thì kết quả ở vế trái bằng 2, vế phải bằng 1, khi đó kết quả của hai vế không bằng nhau;

b) Đẳng thức 2x(x + 1) = 2x2 + 2x là hằng đẳng thức;

c) Đẳng thức (a + b)a = a2 + ba là hằng đẳng thức;

d) Đẳng thức a - 2 = 2a + 1 không phải là hằng đẳng thức vì khi x = 2 thì kết quả ở vế trái bằng 0, vế phải bằng 5, khi đó kết quả của hai vế không bằng nhau.

Bài 2.2 trang 33 SGK Toán 8/1 kết nối tri thức

a. 9y2

b. x2

c. 16y2 / x

d. 4x2 / 3y

Bài 2.3 trang 33 SGK Toán 8/1 kết nối tri thức

a) 54 . 66 = (60 - 6)(60 + 6) = 602 - 62

= 3 600 - 36 = 3564;

b) 2032 = (200 + 3)2 = 2002 + 2 . 200 . 3 + 32

= 40 000 + 1 200 + 9 = 41 209.

Bài 2.4 trang 33 SGK Toán 8/1 kết nối tri thức

a) x2 + 4x + 4 = x2 + 2 . x . 2 + 22 = (x + 2)2;

b) 16a2 - 16ab + 4b2 = (4a)2 - 2 . 4a . 2b + (2b)2 = (4a - 2b)2.

Bài 2.5 trang 33 SGK Toán 8/1 kết nối tri thức

a) (x - 3y)2 - (x + 3y)2 = [(x - 3y) + (x + 3y)] [(x - 3y) - (x + 3y)]

= (x - 3y + x + 3y)(x - 3y - x - 3y) = 2x . (-6y) = -12xy;

b) (3x + 4y)2 + (4x - 3y)2

= (3x)2 + 2 . 3x . 4y + (4y)2 + (4x)2 - 2 . 4x . 3y + (3y)2

= (3x)2 + (4y)2 + (4x)2 + (3y)2 = 9x2 + 16y2 + 16x2 + 9y2

= 25x2 + 25y2.

Bài 2.6 trang 33 SGK Toán 8/1 kết nối tri thức

Ta có (n + 2)2 - n2 = (n + 2 - n)(n + 2 + n) = 2(2n + 2) = 4n + 4 = 4(n + 1)

Vì n là số tự nhiên nên n + 1 cũng là số tự nhiên

Và 4 ⋮ 4 nên 4(n + 1) ⋮ 4.

Vậy với mọi số tự nhiên n, ta có (n + 2)2 - n2 chia hết cho 4.

Ta có (n + 2)2 - n2 = (n + 2 - n)(n + 2 + n) = 2(2n + 2) = 4n + 4 = 4(n + 1)

Vì n là số tự nhiên nên n + 1 cũng là số tự nhiên

Và 4 ⋮ 4 nên 4(n + 1) ⋮ 4.

Vậy với mọi số tự nhiên n, ta có (n + 2)2 - n2 chia hết cho 4.

Bài 2.7 trang 36 SGK Toán 8/1 kết nối tri thức

a. \large (x^{2}+2y)^{3}=(x^{2})^{3}+3.(x^{2})^{2}.2y + 3x^{2}.(2y)^{2}+(2y)^{3}

= x6 + 3.x4.2y + 3.x2.4y2 + 8y3

= x6 + 6x4y + 12x2y2 + 8y3.

b.\large \left ( \frac{1}{2}x-1 \right )^{3}=\left ( \frac{1}{2}x \right )^{3}-3.\left ( \frac{1}{2}x \right )^{2}.1+3\frac{1}{2}x.1^{2}-1^{3}

\large =\frac{1}{8}x^{3}-3\frac{1}{4}x^{2}+3.\frac{1}{2}x-1

\large =\frac{1}{8}x^{3}-\frac{3}{4}x^{2}+\frac{3}{2}x-1

Bài 2.8 trang 36 SGK Toán 8/1 kết nối tri thức

a) 27 + 54x + 36x2 + 8x3

= 33 + 3 . 32 . 2x + 3 . 3 . (2x)2 + (2x)3

= (3 + 2x)3;

b) 64x3 - 144x2y + 108xy2 - 27y3

= (4x)3 - 3 . (4x)2 . 3y + 3 . 4x . (3y)2 - (3y)3

= (4x - 3y)3.

Bài 2.9 trang 36 SGK Toán 8/1 kết nối tri thức

a) Ta có: x3 + 9x2 + 27x + 27

= x3 + 3 . x2 . 3 + 3 . x . 32 + 33 = (x + 3)3.

Thay x = 7 vào biểu thức (x + 3)3, ta được:

(7 + 3)3 = 103 = 1 000.

b) Ta có 27 - 54x + 36x2 - 8x3

= 33 - 3 . 32 . 2x + 3 . 3 . (2x)2 - (2x)3

= (3 - 2x)3.

Thay x = 6,5 vào biểu thức (3 - 2x)3, ta được:

(3 - 2 . 6,5)3 = (3 - 13)3 = (-10)3 = -1 000.

Bài 2.10 trang 36 SGK Toán 8/1 kết nối tri thức

a) (x - 2y)3 + (x + 2y)3

= x3 - 3 . x2 . 2y + 3 . x . (2y)2 - (2y)3 + x3 + 3 . x2 . 2y + 3 . x . (2y)2 + (2y)3

= x3 - 6x2y + 12xy2- 8y3 + x3 + 6x2y + 12xy2+ 8y3

= (x3 + x3) + (6x2y - 6x2y) + (12xy2+ 12xy2) + (8y3 - 8y3)

= 2x3 + 24xy2.

b) (3x + 2y)3 + (3x - 2y)3

= (3x)3 + 3 . (3x)2 . 2y + 3 . 3x . (2y)2 + (2y)3 + (3x)3 - 3 . (3x)2 . 2y + 3 . 3x . (2y)2 - (2y)3

= (3x)3 + 3 . 3x . (2y)2 + (3x)3 + 3 . 3x . (2y)2

= 27x3 + 36xy2 + 27x3 + 36xy2

= 54x3 + 72xy2.

Bài 2.11 trang 36 SGK Toán 8/1 kết nối tri thức

Ta có

• (a - b)3 = a3 - 3a2b + 3ab2 - b3;

• - (b - a)3 = - (b3 - 3b2a + 3ba2 - a3)

= - b3 + 3b2a - 3ba2 + a3 = a3 - 3a2b + 3ab2 - b3.

Vậy (a - b)3 = - (b - a)3.

Bài 2.12 trang 39 SGK Toán 8/1 kết nối tri thức

a) (x + 4)(x2 - 4x + 16) = (x + 4)(x2 - x . 4 + 42) = x3 + 43 = x3 + 64;

b) (4x2 + 2xy + y2)(2x - y) = (2x - y)[(2x)2 + 2xy + y2]

= (2x)3 - y3 = 8x3 - y3.

Bài 2.13 trang 39 SGK Toán 8/1 kết nối tri thức

a. 8x

b. 3x / 9x2

Bài 2.14 trang 39 SGK Toán 8/1 kết nối tri thức

a) 27x3 + y3 = (3x)3 + y3 = (3x + y)[(3x)2 - 3x . y + y2]

= (3x + y)(9x2 - 3xy + y2).

b) x3 - 8y3 = x3 - (2y)3

= (x - 2y)[x2 + x . 2y + (2y)2]

= (x - 2y)(x2 + 2xy + 4y2).

Bài 2.15 trang 39 SGK Toán 8/1 kết nối tri thức

(x - 2y)(x2 + 2xy + 4y2) + (x + 2y)(x2 - 2xy + 4y2)

= x3 - (2y)3 + x3 + (2y)3 = (x3 + x3) + [(2y)3 - (2y)3]

= x3 + x3 = 2x3.

Trên đây là những kiến thức về các hằng đẳng thức đáng nhớ cùng hướng dẫn giải bài tập trong sách giáo khoa toán 8 kết nối tri thức, chân trời sáng tạo và cánh diều. Để tìm hiểu thêm các bài học trong chương trình toán 8, các em hãy theo dõi những bài viết mới của VUIHOC hàng ngày nhé!

>> Mời bạn tham khảo thêm:

Link nội dung: https://getairvestal.com/hang-dang-thuc-dang-nhotoan-8-chuong-trinh-moi-a12178.html