Trước khi đi cụ thể vào bài viết, các em cùng theo dõi bảng sau để nắm được những nhận định về phương trình logarit cơ bản trong đề thi THPT Quốc gia dự kiến nhé:
Để tối ưu thời gian ôn tập, thầy cô VUIHOC gửi tặng các em file tổng hợp lý thuyết ôn tập phương trình logarit cơ bản. Các em nhớ tải về nhé!
Tải xuống file tổng hợp lý thuyết phương trình logarit cơ bản
Về định nghĩa:
Trong toán học, logarit của một số là lũy thừa mà một giá trị cố định, gọi là cơ số, phải được nâng lên để tạo ra số đó. Có thể hiểu đơn giản, logarit chính là phép toán nghịch đảo của lũy thừa, hiểu 1 cách đơn giản hơn thì hàm logarit chính là đếm số lần lặp đi lặp lại của phép nhân.
Ví dụ, logarit cơ số 10 của 1000 là 3 vì 1000 là 10 lũy thừa 3: $1000=10.10.10=10^3$. Tổng quát hơn, nếu $x=b^y$ thì $y$ được gọi là logarit cơ số $b$ của $x$ và được ký hiệu là $log_bx$.
Có 3 loại logarit:
Logarit thập phân: là logarit có cơ số $10$, viết tắt là $log_{10}b=logb(=lgb)$ có nhiều ứng dụng trong khoa học và kỹ thuật.
Logarit tự nhiên: là logarit có cơ số là hằng số $e$, viết tắt là $ln(b)$, $log_e(b)$ có ứng dụng nhiều trong toán học và vật lý, đặc biệt là vi tích phân.
Logarit nhị phân: là logarit sử dụng cơ số 2, ký hiệu là $log_2b$ có ứng dụng trong khoa học máy tính, lập trình ngôn ngữ $C$
Ngoài ra, ta còn 2 cách phân loại khác là logarit phức (là hàm ngược của hàm lũy thừa trong số phức) và logarit rời rạc (ứng dụng trong mật mã hoá khoá công khai)
Tóm lại, công thức chung của logarit có dạng như sau:
Logarit có công thức là $log_ab$ trong đó $b>0, 0
Tổng hợp các dạng công thức logarit:
VUIHOC tổng hợp cho các em một số công thức loga cơ bản dùng để biến đổi các phép tính logarit. Ngoài ra, các công thức này rất quan trọng vì nó cũng dùng để ứng dụng trong các phép biến đổi hàm log.
Công thức tích, thương, luỹ thừa và căn:
Công thức đổi cơ số:
Logarit log_bx có thể được tính từ logarit cơ số trung gian k của x và b theo công thức:
Các máy tính bỏ túi điển hình thường tính logarit cơ số 10 và e. Logarit cơ số b bất kỳ có thể được xác định bằng cách đưa một trong hai logarit đặc biệt này vào công thức trên:
Về định nghĩa:
Với cơ số $a$ dương và khác 1 thì phương trình có dạng như sau được gọi là phương trình logarit cơ bản: $log_ax=b$
Ta thấy vế trái của phương trình là hàm đơn điệu có miền giá trị là $\mathbb{R}$. Vế phải phương trình là một hàm hằng. Vì vậy phương trình logarit cơ bản luôn có nghiệm duy nhất. Theo định nghĩa của logarit ta dễ dàng suy ra nghiệm đó là $x=a^b$
Với điều kiện 0
Hai quy tắc tính logarit quan trọng dùng để biến đổi phương trình logarit mà các em cần ghi nhớ:
Quy tắc logarit của 1 tích:
- Công thức logarit của một tích như sau: $log_{\alpha }(ab)=log_{\alpha }b+log_{\alpha }c$.
- Điều kiện: $a, b, c$ đều là số dương với $a\neq 1$.
- Đây là logarit hai số a và b thực hiện theo phép nhân thông qua phép cộng logarit ra đời vào thế kỷ 17. Sử dụng bảng logarit, ta sẽ đưa logarit về cơ số $a=10$ là logarit thập phân sẽ dễ dàng tra bảng, tính toán hơn. Logarit tự nhiên với hằng số $e$ là cơ số (khoảng bằng 2,718) được áp dụng thuận tiện trong toán học. Logarit nhị phân có cơ số 2 được dùng trong khoa học máy tính.
- Nếu muốn thu nhỏ phạm vi các đại lượng, bạn dùng thang logarit.
Quy tắc logarit của 1 luỹ thừa:
- Ta có công thức logarit như sau: logabα = αlogab.
- Điều kiện với mọi số α và a, b là số dương với a # 1.
Đối với phương trình logarit, chúng ta cần lưu ý thêm các công thức dưới đây:
Một lưu ý nhỏ cho các em đó là trong quá trình biến đổi để tìm ra cách giải pt logarit, chúng ta thường quên việc kiểm soát miền xác định của phương trình. Vì vậy để cho an toàn thì ngoài phương trình logarit cơ bản, các bạn nên đặt điều kiện xác định cho phương trình trước khi biến đổi.
Phương pháp giải dạng toán này như sau:
Ta cùng xét ví dụ sau để rõ hơn về cách giải phương trình logarit cơ bản bằng cách đưa về cùng cơ số:
Ở cách giải phương trình logarit cơ bản này, khi đặt ẩn phụ, chúng ta cần chú ý xem miền giá trị của ẩn phụ để đặt điều kiện cho ẩn phụ hoặc không. Ta có công thức tổng quát như sau:
Phương trình dạng: $Q[log_af(x)]=0 -> Đặt t=log_ax$ (x thuộc R)
Các em cùng VUIHOC xét ví dụ sau đây:
Bản chất của việc giải phương trình logarit cơ bản (ở trên) cũng là mũ hóa 2 vế với cơ số a. Trong 1 số trường hợp, phương trình có cả loga có cả mũ thì ta có thể thử áp dụng mũ hóa 2 vế để giải.
Phương trình $log_af(x)=log_bg(x) (a>0, a\neq 1)$
Ta đặt $log_af(x) = log_bg(x)=t => Hoặc f(x)=a^t hoặc g(x)=b^t$
=> Đưa về dạng phương trình ẩn $t$.
Giải phương trình: $log_ax=f(x) (0
Bước 1: Vẽ đồ thị các hàm số: $y=log_ax(0
Bước 2: Kết luận nghiệm của phương trình đã cho là số giao điểm của đồ thị
Ta có ví dụ minh hoạ về phương pháp giải phương trình logarit cơ bản này như sau:
Để áp dụng các lý thuyết và thành thạo khi giải các bài tập phương trình logarit cơ bản, các em cùng luyện tập các bài tập theo file bài tập dưới đây. Ở trong bộ bài tập phương trình logarit cơ bản này, các thầy cô VUIHOC đã tổng hợp và chọn lọc những bài tập gần với các dạng đề thi nhất. Các em nhớ tải về luyện tập nhé!
Tải xuống file tổng hợp bài tập phương trình logarit cơ bản có giải chi tiết
Sau bài viết này, hy vọng rằng các em sẽ nắm chắc được kiến thức về lý thuyết và các dạng bài tập phương trình logarit cơ bản. Chúc các em đạt điểm cao!
Link nội dung: https://getairvestal.com/tuyen-tap-ly-thuyet-phuong-trinh-logarit-co-ban-kem-bai-tap-a13239.html