CHI TIẾT VỀ 5 KHỐI ĐA DIỆN ĐỀU
Bài viết sẽ trình bày cho các bạn các nội dung gồm:
• Mỗi mặt là một tam giác đều
• Mỗi đỉnh là đỉnh chung của đúng 3 mặt
• Có số đỉnh (Đ); số mặt (M); số cạnh (C) lần lượt là $D=4,M=4,C=6.$
• Diện tích tất cả các mặt của khối tứ diện đều cạnh $a$ là $S=4\left( \dfrac{{{a}^{2}}\sqrt{3}}{4} \right)=\sqrt{3}{{a}^{2}}.$
• Thể tích của khối tứ diện đều cạnh $a$ là $V=\dfrac{\sqrt{2}{{a}^{3}}}{12}.$
• Gồm 6 mặt phẳng đối xứng (mặt phẳng trung trực của mỗi cạnh); 3 trục đối xứng (đoạn nối trung điểm của hai cạnh đối diện)
• Bán kính mặt cầu ngoại tiếp $R=\dfrac{a\sqrt{6}}{4}.$
• Mỗi mặt là một tam giác đều
• Mỗi đỉnh là đỉnh chung của đúng 4 mặt
• Có số đỉnh (Đ); số mặt (M); số cạnh (C) lần lượt là $D=6,M=8,C=12.$
• Diện tích tất cả các mặt của khối bát diện đều cạnh $a$ là $S=2\sqrt{3}{{a}^{2}}.$
• Gồm 9 mặt phẳng đối xứng
• Thể tích khối bát diện đều cạnh $a$ là $V=\dfrac{{{a}^{3}}\sqrt{2}}{3}.$
• Bán kính mặt cầu ngoại tiếp là $R=\dfrac{a\sqrt{2}}{2}.$
• Mỗi mặt là một hình vuông
• Mỗi đỉnh là đỉnh chung của 3 mặt
• Số đỉnh (Đ); Số mặt (M); Số cạnh (C) lần lượt là $D=8,M=6,C=12.$
• Diện tích của tất cả các mặt khối lập phương là $S=6{{a}^{2}}.$
• Gồm 9 mặt phẳng đối xứng
• Thể tích khối lập phương cạnh $a$ là $V={{a}^{3}}.$
• Bán kính mặt cầu ngoại tiếp là $R=\dfrac{a\sqrt{3}}{2}.$
• Mỗi mặt là một ngũ giác đều • Mỗi đỉnh là đỉnh chung của ba mặt
• Số đỉnh (Đ); Số mặt (M); Số canh (C) lần lượt là $D=20,M=12,C=30.$
• Diện tích tất cả các mặt của khối 12 mặt đều là $S=3\sqrt{25+10\sqrt{5}}{{a}^{2}}.$
• Gồm 15 mặt phẳng đối xứng
• Thể tích khối 12 mặt đều cạnh $a$ là $V=\dfrac{{{a}^{3}}(15+7\sqrt{5})}{4}.$
• Bán kính mặt cầu ngoại tiếp là $R=\dfrac{a(\sqrt{15}+\sqrt{3})}{4}.$
• Mỗi mặt là một tam giác đều
• Mỗi đỉnh là đỉnh chung của 5 mặt
• Số đỉnh (Đ); Số mặt (M); Số cạnh (C) lần lượt là $D=12,M=20,C=30.$
• Diện tích của tất cả các mặt khối 20 mặt đều là $S=5\sqrt{3}{{a}^{2}}.$
• Gồm 15 mặt phẳng đối xứng
• Thể tích khối 20 mặt đều cạnh $a$ là $V=\dfrac{5(3+\sqrt{5}){{a}^{3}}}{12}.$
• Bán kính mặt cầu ngoại tiếp là $R=\dfrac{a(\sqrt{10}+2\sqrt{5})}{4}.$